死磕「文本智能」,多模态研究的下一个前沿
死磕「文本智能」,多模态研究的下一个前沿dots.ocr 支持多语言文档的解析,能够在单一模型中统一完成版面检测、文本识别、表格解析、公式提取等任务,并保持良好的阅读顺序。他们之所以在一个模型中完成这些任务,是因为他们相信这些任务之间可以相互促进,为彼此提供更多的 context,从而达到更高的性能上限。目前,该项目的 star 量已经超过了 5000。
dots.ocr 支持多语言文档的解析,能够在单一模型中统一完成版面检测、文本识别、表格解析、公式提取等任务,并保持良好的阅读顺序。他们之所以在一个模型中完成这些任务,是因为他们相信这些任务之间可以相互促进,为彼此提供更多的 context,从而达到更高的性能上限。目前,该项目的 star 量已经超过了 5000。
最近在开源社区闲逛,发现字节悄悄放出了一个叫 MineContext 的项目。和字节Viking团队的小伙伴聊天时,我了解到一个挺有意思的故事:MineContext 团队其实在今年四五月份就有了初步想法,甚至更早之前就在思考:如何围绕个人的完整记忆来做应用。
近日刚好得了空闲,在研读 Anthropic 官方技术博客和一些相关论文,主题是「Agent 与 Context 工程」。2025 年 6 月以来,原名为「Prompt Engineering」的提示词工程,在 AI Agent 概念日趋火热的应用潮中,
这几天,关于「微调已死」的言论吸引了学术圈的广泛关注。一篇来自斯坦福大学、SambaNova、UC 伯克利的论文提出了一种名为 Agentic Context Engineering(智能体 / 主动式上下文工程)的技术,让语言模型无需微调也能实现自我提升!
调模型不如“管上下文”。这篇文章基于 ACE(Agentic Context Engineering),把系统提示、运行记忆和证据做成可演化的 playbook,用“生成—反思—策展”三角色加差分更新,规避简化偏置与上下文塌缩。在 AppWorld 与金融基准上,ACE 相较强基线平均提升约 +10.6% 与 +8.6%,适配时延降至约 1/6(-86.9%),且在无标注监督场景依然有效。
Supermemory 已获得由 Susa Ventures、Browder Capital 和 SF1.vc 领投的 260 万美元种子轮融资。此轮融资还包括 Cloudflare 的 Knecht、谷歌人工智能负责人 Jeff Dean、DeepMind 产品经理 Logan Kilpatrick、Sentry 创始人 David Cramer 以及来自 OpenAI、
最近 flowith 推出了全新画布,交互形态全新升级,现在 AI 生成的任意内容,都可以被很方便的右键点击节点,存入任意知识库,后续工作都可以调用。说实话,flowith 是一款上手门槛比较高的产品,它不像一般对话式的 ChatBot 那样简单,
谷歌回归搜索老本行,这一次,它要让 AI 能像人一样「看见」网页。 这是谷歌前不久在 Gemini API 全面上线的 URL Context 功能(5 月 28 日已在 Google AI Studio 中推出),它使 Gemini 模型能够访问并处理来自 URL 的内容,包括网页、PDF 和图像。
Manus 团队刚分享了他们构建 Agent 的 Context 工程经验。刚好我在自己读的过程中,对全文进行了精校翻译,并高亮要点与排版。来自一线的分享,总共 6 条经验,共 5K 字。
最终体验 = 模型 + context (包括提示词、文件、代码库、业务数据,MCP服务等等一切喂给模型的东西),正好Andrej karpathy前几天天也整了个新提法叫Context engineering,这里可以碰瓷一下Andrej哈哈,这篇文章好几天前我发在小红书了