看完 Manus、Cursor 分享后的最大收获:避免 Context 的过度工程化才是关键
看完 Manus、Cursor 分享后的最大收获:避免 Context 的过度工程化才是关键最近,Cursor 也发表了一篇文章《Dynamic context discovery》,分享了他们是怎么做上下文管理的。结合 Manus、Cursor 这两家 Agent 领域头部团队的思路,我们整理了如何做好上下文工程的一些关键要点。
最近,Cursor 也发表了一篇文章《Dynamic context discovery》,分享了他们是怎么做上下文管理的。结合 Manus、Cursor 这两家 Agent 领域头部团队的思路,我们整理了如何做好上下文工程的一些关键要点。
过去的 2025 年,对于检索增强生成(RAG)技术而言,是经历深刻反思、激烈辩论与实质性演进的一年。
扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临
最近半年,我阅读了业界关于 AI Agent 的工程实践:Anthropic 的 Context Engineering 论文、Manus 的工程分享、Cline 的 Memory Bank 设计等。同时自己也一直在做跟 AI Agent 相关的项目,如:Jta[1](开源的翻译 Agent,基于 Agentic Workflow)。
在几天前,上海交大发布了一篇名为 《上下文工程2.0:上下文工程的上下文》(Context Engineering 2.0: The Context of Context Engineering) 的重磅论文。
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。
dots.ocr 支持多语言文档的解析,能够在单一模型中统一完成版面检测、文本识别、表格解析、公式提取等任务,并保持良好的阅读顺序。他们之所以在一个模型中完成这些任务,是因为他们相信这些任务之间可以相互促进,为彼此提供更多的 context,从而达到更高的性能上限。目前,该项目的 star 量已经超过了 5000。
最近在开源社区闲逛,发现字节悄悄放出了一个叫 MineContext 的项目。和字节Viking团队的小伙伴聊天时,我了解到一个挺有意思的故事:MineContext 团队其实在今年四五月份就有了初步想法,甚至更早之前就在思考:如何围绕个人的完整记忆来做应用。
近日刚好得了空闲,在研读 Anthropic 官方技术博客和一些相关论文,主题是「Agent 与 Context 工程」。2025 年 6 月以来,原名为「Prompt Engineering」的提示词工程,在 AI Agent 概念日趋火热的应用潮中,
这几天,关于「微调已死」的言论吸引了学术圈的广泛关注。一篇来自斯坦福大学、SambaNova、UC 伯克利的论文提出了一种名为 Agentic Context Engineering(智能体 / 主动式上下文工程)的技术,让语言模型无需微调也能实现自我提升!